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NOTICE

Restriction on Disclosure

This report describes the methodology and findings of a contract research project carried out by the
Centre For Engineering Research Inc. on behalf of the Pipeline Program Participants. All data,
analyses and conclusions are proprietary to C-FER. The material contained in this report may not
be disclosed or used in whole or in part except in accordance with the terms of the Joint Industry
Project Agreement. The report contents may not be reproduced in whole or in part, or be
transferred in any form, without also including a complete reference to the source document.
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1.0 INTRODUCTION

1.1 Background

This document is part of the deliverables of C-FER’s joint industry research program on risk-based
optimization of pipeline integrity maintenance. The goal of the research program is to develop
models and software tools that can assist pipeline operators in making optimal decisions regarding
integrity maintenance activities for a given pipeline or pipeline segment. The software resulting
from this joint industry program is called PIRAMID (Pipeline Risk Analysis for Maintenance and
Inspection Decisions). This document forms part of the technical reference manuals for the

program.

The risk associated with a pipeline failure depends on a number of interrelated uncertain
parameters. To begin with, there is uncertainty about whether or not the pipeline will fail. If a
failure occurs, there is uncertainty regarding the failure location and weather conditions at the tiume
of failure. These factors determine the amount of product released, the types of hazard that may
develop (such as jet fires, vapour cloud fires or explosions), and ultimately the costs, number of

fatalities and environmental impact associated with the failure.

The benefits associated with a given integrity maintenance action are measured in terms of its
impact on the risk associated with operating the pipeline. In order to find the optimal set of
integrity maintenance actions in the presence of the above-mentioned uncertainties, a probabilistic
optimization methodology is required. The basic elements of this methodology are:

1. a method to derive the probability distributions of the Major consequence parameters
{i.e., costs, losses in life and spill volumes) from the probability distributions of the failure

type. environmental conditions, and line operating parameters; and

2. amodel to use the information from (1) to calculate the total expected value associated with a
given choice, so that the choice with the highest expected value can be adopted.

The probabilistic optimization methodology selected for this purpose is decision influence diagrams
(Shachter 1986 and Call and Miller 1990). An introduction to this methodology and an explanation
of the reasons for its selection are given in PIRAMID Technical Reference Manual No. 1.2
(Stephens et al. 1995a).
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Introduction

The influence diagram methodology, as it exists in the literature, was developed in the field of
management science; it has some limitations that affect its applicability to engineering problems (see
Section 2.0 for a description of these limitations). As part of the present program, new
developments were undertaken to extend and generalize the methodology. This work resulted in a
new influence diagram methodology that is more suited to risk-based optimization of pipeline
systems. The new influence diagram methodology is used in the present program as a tool for alj
probabilistic inference and risk-based optimization problems. As such, an understanding of the

methodology is essential for effective use of the software products developed.

1.2  Objective and Scope

This report describes the influence diagram methodology and its use as a basis for probabilistic
inference and risk-based optimization. The original influence diagram methodology as it exists in
the literature is outlined, and the extensions developed by C-FER are described. The steps
mvolved in solving an influence diagram are explained using a simplified representation of a
pipeline risk-based optimization problem. This example problem demonstrates the inputs needed to
characterize a risk-based decision problem and the outputs obtained from the influence diagram.

Specifically, the purpose of this document is to explain the process of building, solving, and
interpreting the results of an influence diagram to a user of software products that use influence
diagrams as a method of risk-based optimization. Such users are assumed to be familiar with the
basic concepts of risk analysis and probability distributions, but knowiedge of the details of
probabilistic analysis methods is not assumed. The document is therefore written in an informal
manner, focusing on the concepts and avoiding mathematical details. In addition, it only covers
aspects of the methodology that are used in PIRAMID. The actual algorithms are described in
Appendices A and B, and a more formal description of the original influence diagram methodology
can be found in Shachter (1986).

(g
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2.0 DECISION ANALYSIS USING INFLUENCE DIAGRAMS

2.1 introduction

This section provides a general description of an influence diagram and outlines how it is used as a
basis for optimization under uncertainty. The example problem shown in Figure 2.1 is used as a
basis for the discussion. This problem deals with optimizing corrosion integrity maintenance
actions for a segment of gas pipeline. It is noted at the outset that this influence diagram is only a
small subset of the diagram that would be required to provide a realistic solution to a practical
problem. However, it contains the main elements of the influence diagram methodology and is
therefore suitable as an illustrative example. More complete influence diagrams have been
developed and used as a basis for decision making for actual pipeline problems as described in
PIRAMID Technical Reference Manual No. 3.1 (Stephens er al. 1995b).

2.2 Influence Diagram Representation and Terminology

The basic elements of the diagram are the nodes (square, circles and rounded square) and arrows.
The nodes contain parameters that are relevant to the decision problem, whereas the arrows
represent dependence relationships between these parameters. The influence diagram is explained
below using the example in Figure 2.1 as a basis. The notation and terminology used are

summarized in Figure 2.2, and these will be explained more fully as they arise in the discussion.

(1) Integrity Action

The first node in the diagram is the decision node (denoted by a square). This means that the value
of the node parameter is to be selected by the decision maker. The node parameter (decision) in
this case is called Integrity Action, and it can take one of three values representing the available
choices. These values are No Action, Run Pig and CP Survey as indicated in the box adjacent to
node (1) in Figure 2.1. It is assumed that problems identified by the pig or from the CP Survey

will be corrected,
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Decision Analysis Using Influence Diagrams
(2) Pipe Performance

The second node in the diagram pertains to the parameter referred to as Pipe Performance. This
parameter is assumed 10 take one of two values, namely Safe or Failure. Because it cannot be
determined with certainty whether or not the pipe is going to fail, this parameter i$ uncertain (or
random). The node is therefore called a chance node and is denoted by a circle. Because the
parameter can take one of two discrete values, it is represented by a discrete probability distribution

(see box adjacent to node 2 in Figure 2.1).

The arrow starting at node (1) and ending at node (2) indicates that Pipe Performance is dependent
on the Integrity Action selected. The node at which an arrow originates is referred to as a direct
predecessor to the node at which the arrow ends. Conversely, the node at which the arrow ends is
referred to as a direct successor of the node at which the arrow originates. Therefore, Pipe
Performance is a direct successor of Integrity Action, whereas Integrity Action is a direct

predecessor of Pipe Performance.

The solid arrow (as opposed to the dashed arrows in Figure 2.1), connecting Integrity Action and
Pipe Performance denotes conditional dependence. This means that the direct successor node is
probabilistically conditional on the direct predecessor node, so that knowledge of the value of the
direct predecessor does not determine the value of the direct successor, but determines its
probability distribution. In this case, knowledge of the Integrity Action adopted does not determine
with certainty whether or not the pipe will fail, but it can be used to assign the probabilities of
Failure and Safe pipe. So, if a more reliable integrity action is adopted, the benefits will be
reflected in a lower failure probability. A chance node that receives only conditional arrows is

referred to as a conditional node.

(3) Cost

Cost is treated as a random variable (as indicated by the circular chance node) to account for
uncertainties regarding actual costs of integrity maintenance actions and the costs of failure. One
difference between this node and the Pipe Performance chance node, is that the cost is a continuous
parameter that can take any value in a given range, not a discrete parameter that can take specific
values. Cost is therefore represented by a continuous probability distribution as indicated in the
box adjacent to the node in Figure 2.1. The original influence diagram methodology does not
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allow for continuous parameters and this is one of the extensions that were developed under the

present study.

The total cost is the sum of integrity action costs and failure costs (if failure occurs), and therefore
the Cost node is dependent on Integrity Action and Pipe Performance as indicated by the arrows.
In standard influence diagram terminology this can be stated as: the Cost node has Integrity Action
and Pipe Performance as direct predecessors. Solid line arrows are used, indicating conditional
dependence, which again means that the probability distribution of the total cost can be assigned for

given combinations of a specific integrity action and a specific pipe performance.

{4) Failure Location

Failure Location is a chance node with a continuous parameter. This parameter represents the
kilometer post at which the failure occurs along the segment. The probability distribution given for
this parameter in Figure 2.1 is uniform indicating the assumption that a failure is equally likely to
occur anywhere along the pipeline segment. Failure Location has no predecessors and is therefore

referred to as an orphan node.

(5) Number of Fatalities

The Number of Fatalities is an uncertain parameter that is assigned a chance node. It is directly
dependent on Pipe Performance and Failure Location as indicated by the arrows in Figure 2.1. The
dashed arrow lines indicate functional dependence. This means that the Number of Fatalities is
defined as a deterministic function of the Pipe Performance (P} and Failure Location (L), so that if
P and L are known the Number of Fatalities can be calculated without any uncertainty. This does
not mean that the Number of Fatalities in a deterministic parameter. It is in fact an uncertain
parameter because both of the parameters on which it depends (namely P and L) are uncertain -
hence the probability distribution in the adjacent box in Figare 2.1. It is recognized that the
Number of Fatalities depends on many other including wind direction, atmospheric stability,
temperature, product type, pipe diameter and operating pressure. Only two parameters (namely, P
and L) are used in this illustrative example for simplicity, but the concept is applicable to an
arbitrary number of parameters. The concept of functional dependence is not part of the original
influence diagram methodology and was developed by C-FER specifically for this project.
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Decision Analysis Using Influence Diagrams

It is also noted that the Number of Fatalities is a discrete parameter and its treatment as a continuous

parameter is an approximation.

Distinction can now be made between predecessors and direct predecessors. By examining
Figure 2.1 it can be seen that the Number of Fatalities is dependent upon the decision node. This
is because the Number of Fatalities depends on Pipe Performance. which in turn depends on the
decision node. Therefore, Integrity Action is a predecessor of the Number of Fatalities (although
not a direct predecessor). More formally, node A is said to be a predecessor of node B if a path
can be found (through other nodes) from B to A. Recall that if A immediately precedes B (i.e., the
path does not contain any other nodes) then A is a direct predecessor of B. An analogous

distinction can also be made between successor and direct successor nodes.

(8) Value

The Value node is a chance node that contains the parameter being optimized in the decision
problem. Use of the “rounded square™ distinguishes the Value node from other chance nodes.
Value in this example is defined as functionally dependent on Cost and Number of Fatalities.

2.3 Optimization Using Influence Diagrams

The basic premise of decision theory is that a given decision maker can define a Value function
such that different choices can be ranked according to the expectation of the Value function (where
expectation is defined as the mean or expected value). As was shown in Section 2.2, the outcome
of a given choice depends on a sequence of uncertain parameters and therefore the Value associated
with a given decision is not known with certainty at the time the decision is being made. This is
why the decision is made on the basis of optimizing the expectation of the Value function. The
expectation is calculated as the sum of all possible Value outcomes, each weighted by its
probability of occurrence.

For the influence diagram in Figure 2.1, the Value ( V) is defined as a deterministic function of the
Cost () and the Number of Fatalities (N). A common simple approach is to define the value
function as

V= (C+aN) [2.1]




CENTRE FOR ENGINEERING RESEARCH INC.

Decision Analysis Using Influence Diagrams

where « is a constant that converts losses in life to financial costs. Because of the negative sign in
this equation, maximizing the expectation of V corresponds to minimizing the total expected cost
including the cost associated with losses in life. This approach implies that the decision maker can
express all consequences in terms of monetary costs, and that the best choice is the one that
minimizes the expected cost. It can be shown that this approach is not always appropriate, and
other types of functions may better represent the true preferences of decision makers (see
e.g., Keeney and Raiffa 1976). The selection of an appropriate Value function is discussed more
fully in PIRAMID Technical Reference Manual No. 3.1 {Stephens ef al. 1995b). It is sufficient for
the purpose of this report to assume that the Value (V) is defined as a deterministic function of the
Cost (C) and the number of Fatalities (V).

Based on the foregoing discussion, the solution of the influence diagram consists of finding the
expectation of the Value function for each possible decision. Once this is done. the optimal choice

is identified as the one yielding the highest expected Value.
2.4 Comments on Influence Diagram Implementation

2.4.1 Including Deterministic Parameters

It is important to note that the influence diagram in Figure 2.1 includes only two types of
parameters. These are decision parameters and uncertain parameters (of which the Value parameter
1s a special case). In addition to these two types, most problems will involve deterministic
parameters such as the population density and its variation along the route, the type and physical

properties of the product in the pipeline, and the pipeline diameter.

Each of these deterministic parameters is included as part of the specific node for which it is used.
For example, the population density and its variation along the route is required to evaluate the
Number of Fatalities from the Pipe Performance and the Failure Location. It would therefore be
included as part of the information required to characterize the Number of Fatalities node.
Deterministic parameters therefore do not appear explicitly in a standard influence diagram
representation. Influence diagrams deal only with decision and uncertain (random) parameters, and

this should be taken into consideration in interpreting an influence diagram.

~1
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Decision Analysis Using Influence Diagrams
2.4.2 Building Influence Diagrams

With reference to the discussion in Section 2.4.1, it is recognized that there is a degree of
uncertainty associated with almost all parameters, and that the treatment of any specific parameter
as probabilistic or deterministic is a choice made on a case-by-case basis. depending largely on the
relative magnitude of the associated uncertainty. If, for example, the population density is shown
to have significant uncertainty, then it should be included as a node in the influence diagram and the
appropriate arrows added to characterize its relationships to other diagram nodes. In addition, there
may be different models available to calculate a given node, which use different mput parameters.

This is why a unique influence diagram does not necessarily exist for any particular problem

The above argument suggests that it is desirable for the software to be flexible with respect o
building and modifying influence diagrams for particular problems. To achieve this, PIRAMID
includes separate modules that create an influence diagram, lead the user through definition of the
input parameters for each node in the appropriate sequence, solve for node parameters by calling
specific node algorithms, and solve the diagram to obtain the optimal choice. A new diagram can
be easily built by creating initialization code that defines the diagram nodes and their

interdependencies (arrows).

It is possible to develop a user interface that allows users to define the initialization data mentioned
in the previous paragraph, and thus build their own influence diagrams. However, the level of
effort required for this is beyond the scope of the present program. In addition, if users define
their own influence diagrams, they would also have to be responsible for defining the specific node
algorithms. For example, the diagram in Figure 2.1 assumes that the Number of Fatalities is
defined as a function of Pipe Performance and Failure Location. If this diagram were modified to
include an additional parameter such as wind speed, then a new model that uses wind speed in
calculating the Number of Fatalities would be expected. Therefore, much of the technical modeling

required to solve the problem would be left to the user.

Based on the above, the approach adopted in PIRAMID is to develop specific influence diagrams.
Once these diagrams are approved by the program Steering Committee, they are used in the
analysis. As mentioned earlier in this section the program has been designed in such a manner as
to make it easy for C-FER to modify these diagrams if required.
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Node Notation

Decision node: indicates a choice to be made
Chance node: Indicates uncertain parameter or event (discrete or continuous)
Value node: Indicates the criterion used fo evaluate consequences

Arrow Notation

Solid Line arrow: Indicates probabilistic dependence

— e P Dashed line arrow: indicates functional dependence

Other Terminology

Predecessor to node A : Node from which a path leading to A begins

Successor to node A Node to which a path leading to A begins

Functional predecessor: Predecessor node from which a functional arrow emanates
Conditional predecessor: Fredecessor node from which a conditional arrow emanates
Direct predecessor to A; Predecessor node that immedia;tely precedes A

(i.e. the path from it to A does not contain any other nodes)

Direct successor to A: Successor node that immediately succeeds A
{i.e. the path from A to it does not contain any other nodes)

Direct conditional predecessor to A: A predecessor node from which the path to node A contains
(A must be a functional node) only one conditional arrow (may contain functional arrows)
Functional node: A chance node that receives only functional arrows
Conditional node: A chance node that receives only conditional arrows
Orphan node: A node that does not have any predecessors

Figure 2.2 Influence diagram notation and terminology
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3.0 SOLVING AN INFLUENCE DIAGRAM

3.1 Introduction

The influence diagram discussed in Section 2.0 is a qgualitative representation of the decision
problem. It specifies all decision and uncertain parameters influencing the optimization, and
describes the interdependence between these parameters. In order to use this diagram to solve the
optimization problem, each diagram node must be quantified. Quantifying a node means defining
the conditional probability distributions of the node parameter for all possible values of its
conditional predecessor nodes. Once ail nodes are defined, the diagram can be solved to calculate

the expected value for each choice, giving the basis for selecting the optimal solution.

The diagram solution algorithm 1s essentially a method that identifies the conditional predecessors
of any node, derives its conditional probability distributions and calculates the expectations of node
parameters conditional on the choices. The following sections describe the influence diagram
solution algorithm used in the software delivered under this program. This description is based on
the simplified example problem given in Section 2.0 (Figure 2.1). The actual algorithm used is

described in Appendix A, with specific mention of the parts that were developed under this project.

The algorithm given here has some extensions over the standard influence diagram methodology as
mentioned in Section 2.2. On the other hand, some aspects of the standard algorithm were omitted
because they are not used in the present program. A complete description of the standard influence
diagram solution algorithm can be found in Shachter (1986).

3.2 Sequence of Node Definition

Due to the interdependence between diagram nodes, there are constraints regarding the sequence in
which the different diagram nodes can be defined. For example, the probability distribution of
Pipe Performance depends on the Integrity Action choice made (see Section 2.1), and therefore it
is not possible to define the Pipe Performance node untl the Integrity Action node is defined. In
general, a node becomes accessible only after all of its direct predecessors are fully defined. The
term defined is used to indicate a node for which all the required probability distributions have been
defined.
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Solving an Influence Diagram

Figure 3.1 shows the sequence of node definition for the example problem. Initially, only the
nodes that do not have any predecessors (the orphan nodes) can be defined. These are
nodes I and 4 (see Figure 3.1a). Once nodes 1 and 4 are defined, node 2 becomes available
(Figure 3.1b), and when 2 is defined. 3 and 5 become available (Figure 3.1c¢). Finally, when
nodes 3 and 5 are defined the Value node becomes available (Figure 2.1d), and the whole diagram
is completely defined (Figure 3.35). It is noted that the sequence in which the nodes are defined is

not unique. Possible sequences include 1-2-3-4-5-6, 4-1-2-5-3-6 or 1-4-2-3-3-6.
3.3 Defining influence Diagram Nodes

3.3.1 Node Conditional Distributions

To understand the process of solving an influence diagram, it must be tecognized that each chance
node (including the value node) in the influence diagram embodies a series of conditional
probability distributions, corresponding to specific values of its conditional predecessor nodes. In
this context, a conditional probability distribution is defined as the probability distribution of the
node parameter given a certain combination of values of its predecessor nodes. This can be
explained by examining the Pipe Performance node in Figure 3.1. This node is conditional on the
decision (Integrity Action node), which means that for each choice, there is a different conditional
probability distribution of the Pipe Performance. In this case, there are three conditional
probability distributions corresponding to the three possible choices, namely No Action, Pig Run
and CP Survey.

Based on the above, the definition of each node invoives the following two steps:

1. Identify the node’s direct conditional predecessors and find all combinations of possible
outcomes of these predecessors. The number of these combinations is equal to the number of

conditional distributions required to define the node.

2. Define the conditional probability distributions of the node parameters for all combinations
identified in (1.

These steps are described in more detail for different nodes in Sections 3.3.2 and 3.3.3.

10
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Solving an Influence Diagram

3.3.2 Defining Orphan and Conditional Nodes

Orphan and conditional nodes are usually defined by direct input to the influence diagram. This is

the case for orphan nodes (Nodes 1 and 4 in Figure 3.2) because they do not have any

predecessors from which they can be calculated. Conditional nodes (nodes 2 and 3 in Figure 3.2)

correspond to basic parameters for which the probability distributions are usually defined as input.

The definition of orphan and conditional nodes in the diagram is described as follows:

1.

Integrity Action (the decision node). The input required for complete definition of the decision
node is the number of choices and the designation (or title) of each choice.

Pipe Performance. Pipe Performance is conditional only on the decision node. Its input
therefore consists of three conditional probability distributions, one for each Integrity Action
(see Figure 3.2). Each conditional probability distribution of Pipe Performance is defined by
the probability of Failure and the probability of Safe performance for the duration considered in
the analysis (e.g., | year). These two probabilities must add up to 1.0.

Instead of defining the conditional probability distributions of the node directly, it may be
convenient to calculate them from other inputs. For example, pipe performance is often
characterized by the failure rate per km.year. It may therefore be more convenient to define the
failure rate for each Integrity Action option and use it to calculate the required probability
distribution. In this case the probability of Failure can be calculated as the failure rate
multiplied by the segment length in kilometers and the duration of the analysis in years. The
Probability of Safe performance can then be obtained by subtracting the probability of Failure
from 1.0. This does not change the basic concept, since the input in this case is just a different

form of the required probability distribution.

Cost. The Cost node is conditional on both Integrity Action and Pipe Performance. Therefore,
a conditional distribution is needed for each combination of these two parameters (see
Figure 3.2). There are three possible Integrity Actions (No Action, Run Pig and CP Survey)
and two possible Pipe Performance levels (Safe and Failure), leading to 2 x 3 =6  input
conditional distributions for the Cost.

Failure Location. Failure Location is an orphan chance node that does not have any
predecessors.  Its required input consists of one probability distribution representing the

location of a failure if one occurs (see Figure 3.2).
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Solving an Influence Diagram
3.3.3 Detining Functional Nodes

The two functional nodes in the influence diagram are node 5 representing the Number of Fatalities
and node 6 representing the Value. As discussed earlier, these nodes are defined as functions of
their direct predecessors. For example, the Number of Faralities (N) is a function of the Pipe

Performance (P) and Failure Location (1) in the form

ng{P,L} {311

where g denotes an arbitrary function. Equation [3.1] along with the probability distributions of P
and L, can be used to calculate the probability distribution of N. This calculation can be based on
any standard probability integration method such as Monte Carlo simulation or First and Second
Order Reliability Methods (see Appendix B).

The number of conditional distributions required for node 5 (Number of Fatalities) can be
determined by examining its direct predecessors. It can be seen from Figure 3.2 that the Failure
Location (node 4) has only one probability distribution, whereas the Pipe Performance (node 2) is
defined by three conditional probability distributions. The Number of Fatalities is therefore
characterized by three probability distributions, each of which resulting from using one of the
conditional distributions of node 2 with the distribution of node 4. Since each distribution in
node 2 is conditional on a given option in the decision node, the resulting probability distribution
of node 5 will be conditional on the same option (see Figure 3.2). The Number of Fatalities is

therefore also conditional on the Integrity Action (decision) node.

More formally, it can be stated that Integrity Action is a direct conditional predecessor of the
Number of Fatalities. By definition, a direct conditional predecessor of a functional node (A) is a
predecessor node from which the path to A contains only one conditional arrow (it can contain any
number of functional arrows). Based on this definition, the results reached by inspection in the

previous paragraph can be reproduced using the following systematic procedure:

1. Identify the direct conditional predecessors of the functional node. In this case the Number of

Fatalities has only one direct conditional predecessor, namely the Integrity Action node.

2. 'The functional node inherits the direct conditional predecessor from each of its direct
{functional) predecessors. In the example problem, the Number of Fatalities inherits
conditional dependence on Integrity Action from Pipe Performance.
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3. For each combination of outcomes of the direct conditional predecessors, the probability
distribution of the functional node being considered is evaluated by using the corresponding
distributions of the direct (functional) predecessor nedes in the deterministic functional
relationship. This means that the Number of Fatalities for the No Action outcome of Integrity
Action node is obtained by using the probability distribution of Pipe Performance for the No

Action case with the probability distribution the Failure Location in Equation {3.1].

Once the Number of Fatalities node is defined as discussed above, the influence diagram can be
simplified as shown in Figure 3.3b. The simplification is possible because once the function has
been used to calculate the probability distribution of the Number of Fatalities, the functional arrows
are no longer needed in the diagram (unless the node needs to be re-evaluated due to changes in the
diagram input). Elimination of the functional arrow between nodes 4 and 5 causes node 4 to be
completely isolated from the diagram. This reflects the fact that the information embodied in
node 4 was passed to node 5. Node 4 can therefore be eliminated from the influence diagram.
The last modification to the diagram in Figure 3.3b is to add the inherited conditional arrow from
node 1 to 5.

The Value node is another functional node for which the function takes the form

V=g(CN) (3.2}

where C is the Cost and N is the Number of Fatalities. Calculation of the Value node follows the
same procedure described earlier for the Number of Fatalities. The direct conditional predecessors
are Pipe Performance (inherited from the Cost node) and Integrity Action (inherited from both the
Cost and Number of Fatalities). Based on this the Value node is defined by 6 distributions, one
for each combination of Integrity Action and Pipe Performance (see Figure 3.2). As before, these
distributions can be calculated by using the corresponding conditional distributions of the Cost and
Number of Fatalities and Equation [3.2] in an appropriate probability integration algorithm.

Definition of the Value node results in simplifying the diagram by eliminating the functional
arrows, adding the inherited conditional arrows and eliminating disconnected nodes. Figure 3.3¢
gives the simplified diagram, which shows that the Number of Fatalities and Cost nodes are
eliminated. The Number of Fatalities is eliminated because it is disconnected from the diagram

once the functional arrow from node 5 to 6 is eliminated and the conditional arrow from | to 5 is

13
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replaced by a conditional arrow from 1 and 6. A similar logic leads to elimination of node 3 and

creation of the conditional arrow from 2 to 6.

3.3.4 Calculating the Expectation of the Value Node

The influence diagram resulting from solving functional nodes contains only conditional nodes (see
Figure 3.3c). This can be solved using the original influence diagram algorithm (Shachter 1986),
which was developed for conditional dependence only. The solution involves calculating the
expectation of the Value, and as mentioned in Section 2.4, the optimal choice is identified based on

maximizing this quantity.

Calculation of the Value expectation is achieved by eliminating diagram nodes until only the
decision and Value nodes remain (see Figure 3.4). The final diagram (Figure 3.4b) gives the
probability distribution of the Value node conditional only on the decision, and this implies that the
mean of each conditional distribution is the required Value expectation for the corresponding

decision.

Node elimination is essentially a process of weighting conditional distributions to calculate
distributions that are conditional on fewer predecessor nodes. This can be explained in relation to
Figure 3.4. In Figure 3.4a the Value (V) has six distributions conditional on all combinations of
Integrity Action (A) and Pipe Performance (P). This means that the probability distribution of V is
conditional on both A and P. In standard probability notation this can be written as f,,,,(v). The
only node that needs to be eliminated in this case is the Pipe Performance node. Elimination of this
node means finding a probability distribution of V that is not conditional on P (i.e., Foiav)).

Using the total probability rule, this can be calculated as follows:

Foa Y= Fopuare s V) p(Failurel A) + Fvisie s (VI P(Safei A) [3.3]

where p(Failure 1A) and p(SafelA) represent the probability of Failure and Safe given a certain
choice A. Equation [3.3] simply states that the probability distribution of the Value for a given
choice can be obtained as a weighted sum of the probability distributions corresponding to Safe and
Failure for the same choice. Because the resulting distribution in unconditional on P, the arrow
from P to V can be eliminated and the node P can also be eliminated because it no longer affects the
Value node. This results in the diagram in Figure 3.4b, in which the Value has three probability

distributions conditional only on the decision node. The means of the distributions in Figure 3.4b

i4
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represent the required Value expectations, and by comparing them the choice leading to the highest

expected Value can be identified.

After evaluation of the functional nodes and elimination of the functional arrows (as discussed in
Section 3), the influence diagram will generally contain more than one node to be eliminated. The
Shachter (1986) algorithm includes a method for identifying the sequence in which these nodes are

to be eliminated.
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4.0 USE OF THE RESULTS

4.1 Decision Making and Sensitivity Analysis

‘The main outcome of the influence diagram solution is the expected value, which is used as a basis
for decision making as illustrated throughout this document. In addition to this, influence diagrams

are well suited to sensitivity analyses. Examples of such analyses include:

1. Sensirivity to a given parameter can be assessed by changing the value of the parameter and

re-analyzing the problem to determine the effect of the change on the outcome. This may be

done for input parameters that cannot be quantified with accuracy. If, for example, the cost
node is difficult to evaluate in a given situation, the decision maker may define bounding values

representing the maximum possible and minimum possible costs for each combination of the
Cost predecessors. The analysis could then be performed for the two scenarios (and possibly
other in-between scenarios) to find out the impact of this parameter on the final decision. Such
analyses may be used to determine ranges of the Cost for which certain choices are optimal.
This information is very valuable because the optimal decision in this case can be obtained by

placing the cost in a certain range, which may be much easier than defining its probability

distribution.

2. Senmsitivity to randomness regarding a given parameter can be assessed by setting this parameter
at its most likely value and examining the effect on the results. This type of analysis can be
performed if additional information that eliminates the randomness associated with a given
parameter can be obtained (e.g., a request for quotations from repair vendors to define the cost

of failure). There is a cost associated with obtaining the information and the sensitivity analysis
can be used to determine whether obtaining the information is worthwhile. This is often
referred to as assessing the value of information. A similar type of analysis can be carried out
to determine the value of control, where control is used to indicate an action (with an associated
cost) that reduces uncertainty regarding a given parameter. An example is the installation of

pressure relief devices to ensure that the pressure does not exceed a specified value.

4.2 intermediate Node Ouicomes

In the course of solving the diagram it was shown that the conditional probability distributions for

all node parameters must be defined. This information in itself can be very valuable. For example,

16
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the probability distribution of the Number of Fatalities was calculated for each choice. This
information can be used as a basis to estimate the individual risk associated with each choice,
which in itself is useful in regulatory submissions and public forums. For more realistic diagrams,
many other useful nodal outcomes will be calculated including information on hazard scenarios,
cost and its different components, and environmental impact. These distributions can be obtained

for any combination of the relevant conditional nodes.

In addition, the probability distribation and expectation of any node can be obtained conditional on
the decision node only. This can be achieved by treating the node in question as the final node in
the diagram, and isolating the relevant portion from the remaining nodes. This is illustrated n
Figure 4.1 for the Cost node and the Number of Fatalities node. Solving the reduced diagram in
Figure 4.1a gives the probability distributions and expectations of the Cost conditional only on the

choices. This information in itself is useful in understanding the consequences of a given decision.

As such, influence diagrams do not have to include a Value node. They can in fact be seen as a
general probabilistic analysis tool that can be used to represent the relationships between a number

of random variables and then derive the dependent variables from the basic variables.

4.3 Other Comments

Realistic influence diagrams may include a large number of conditional and functional nodes. For
example, the consequence analysis influence diagram includes approximately 30 nodes (Stephens
et al. 1995b). This results in compounding the conditions affecting a given node and may lead to a
large number of distributions (up to several hundred) for a given node. In such cases it is not
practical to calculate all of these distributions. An alternate approach is to calculate only the mean
and standard deviation corresponding to each conditional distribution. This drastically reduces the
computational effort and does not affect the decision making process sine the decision is based on
flie expectaiion or mean value in both cases. Coupled with this, specific probability distributions of
particular interest can be calculated separately if desired. The algorithm used to calculate the mean

and standard deviation is described in Appendix B.

Finally, it must be mentioned that the example influence diagram used in this report is a simple
version that does not use all features of the approach. It does however utilize the essential features
required for the consequence analysis model. One major influence diagram feature not discussed
here is that of multiple decision nodes. A diagram including a number of decision nodes can be

17
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solved using the same methodology. In such cases, the decision and uncertain nodes for which the

outcomes will be known before any decision is made must be defined and reflected in the diagram.
The outcome in this case would be a sequence of optimal strategies defining the optimal response at

each decision node. Multiple decision nodes are not implemented in PIRAMID.

18
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APPENDIX A

INFLUENCE DIAGRAM SOLUTION ALGORITHMS

Al Introduction

This appendix gives the algorithms used to solve the influence diagram according to the
methodology described in the main body of the report. The terminology and basic characteristics
of the influence diagrams used are the same as given in Figure 2.2 of the report. Notation used is

defined in Section A.2, and the algorithms are given in the following sections.

The algorithms described in Section A.3 of this Appendix correspond to the extensions developed
by C-FER an added to the original influence diagram methodology. These extensions consist of
incinding nodes that describe continuous random variables and allowing functional dependencies
between nodes. Execution of these algorithms reduces the influence diagram to a standard diagram

that can be solved using the original algorithm developed by Shachter (1986).

The algorithm described in Section A.4 is a simplified version of Shachter’s algorithm that contains
all the features needed to solve the influence diagrams developed in this project. The algorithm is
used to calculate the probability distribution of any functional node. Since the utility node is a
special case of a functional node, the same algorithm is used to define the expected utility for each

decision, thus giving the final solution of the influence diagram.

An example illustrating these algorithms is included in the main body of the report (Section 3.3.3).

A.2 Notation

X; Random variable corresponding to the jth diagram node.

P(x;IE) Probability distribution function of discrete random variable X conditioned on E.
f(xE) Probability density function of continuous random variable X; conditioned on E.
typ(j) Type of node of jth diagram node: D is a decision node; C is a conditional node; F is

a functional node; and V is the value node.

Al
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predj) Set of nodes that are direct predecessors to node j.

fepre(p) Set of direct conditional predecessors of node j.

A.3  Evaluating the Conditional Probability of a Functional Node

A3

.1 Finding the Direct Conditional Predecessors of a Functional Node

Consider node j with typ(j) = F. Let pre(j) ={il,...,in,;} denote its direct predecessors. The
procedure for finding the direct conditional predecessors of node j, fcpre()) is as follows:

1.

o]

A.3

For node j, let fpre(j) equal to pre(j) = {il....inp; b, where fpre(j) is a temporary set.

Check each node k & fpre(}), if typ(k) is not equal to "C" or "D", erase node k from fpre(j) and
add pre(k,1) ={il....ingq } to fpre(j).

. Letfepre(y) = ( {_pre(k)){_J(alldecision nodesetpre(y)); and let fepre'(j) = fepre(j).

kefpre())
For each node i € fcpre()), if a path from node i to node j contains k € fepre(j) and k # 1, then 1

is deleted from fcpre'(j).

Set fepre(j) = fepre'()).

.2 Calculating the Conditional Probability Distribution of a Functional Node j

. Using the direct conditional predecessors of j, define the combination of conditions for which

the distribution of X is to be calculated.
The set of conditions identified in (1) can be ordered using a permutation algorithm.

For each ordered set of conditions in (2) return to the direct predecessors of node j and identify

their corresponding information (probability distribution).
if all the random vartables are continuous:

4.1 Use the node function to calculate an approximation of the mean and standard deviation of
X for each ordered set of conditions given in (2). This uses the approach described in

Appendix B.

4.2 Call FORM (see Appendix B) to generate a numerical probability distribution function in
a specified range around the mean value (e.g., 3 standard deviations on either sides of the

A2
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mean, but always greater than 0.

5. H some of the random variables are discrete, carry out step (4) for each value of the discrete
variable, which is treated as a deterministic parameter. The final distribution is the sum of the
distributions at each point of the discrete parameter, each weighted by the corresponding
probability.

6. For a specified set of conditions, if all the predecessors are discrete random variables, the
distribution of X is also discrete. In this case, the value of X; is evaluated at each set of

conditions. The probability of each value is equal to the probability of the corresponding set of
conditions, calculated as the product of the probabilities of the individual conditions in the set.

Note: The algorithm implemented in PIRAMID as of the date of this document, calculates only the
mean and standard deviation of each node parameter by eliminating the call to FORM (step 4.2) and
using a higher order approximation for the mean and standard deviation in step 4.1 (see

Appendix B}.
A.4  Evaluating the Unconditional Probabitity distribution of a Functional Node

Note: This algorithm is based on the original influence diagram solution except that it assumes
that reversal of arcs and no forgetting arcs are not required (see Shachter 1986). It assumes that the
diagram is oriented and regular. An oriented influence diagram has a value node. An influence
diagram is said to be a regular if it satisfies the conditions that it has no cycles; the value node, if
present has no successors; and there is a direct path to the value node that contains all the decision

nodes.
I. Using the algorithm in Section A.3, calculate the conditional probability density function,
f(x;} an event of fepre())).

2. Define a set of direct predecessors of node j, which is identical to the direct conditional
predecessor set fepre(j). This results in eliminating all direct predecessors of the functional

node being solved for.
3. If there are only decision nodes in fepre(j) then stop calculation.

4. Setnew fpre(j) = fepre()) and use algorithm in Section A.3 to find a new set, fepre(j).

A3
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5. Use the total probability rule to calculate a probability density function or distribution function

conditional on an event of fcpre(j) using:

f(xj-[ an event, E, of fcpre(j)) = Zf(le an event, E, of fpre(j)) P(E|E.)

all possible events of fpre(j}

or

P(xj] an event, E_, of fepre(j)) = ZP(X;; an event, E, of fpre(j)) P(EIEC)

ajl possible events of fpre(j}

The probability density function or distribution function now is conditioned on an event of

fepre(j). The calculation is performed for all events of fcpre()).

6. Repeat (3) - (5) unul the probability density function or distribution function of the node is
conditional only on the decision node and the evaluation of the functional node is complete.

Note: The algorithm implemented in PIRAMID as of the date of this document calculates only the
mean and standard deviation of the distnbution by replacing the conditional distribution functions
in (1) by the conditional means and standard deviations.

A5 Reference

Shachter, R. D. 1986. Evaluating Influence Diagrams. Operations research, Vol. 34, No. 6,
November - December, pp. 871 - 882.

A4
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the cumulative distribution function. The derivation of Fx(x) from these inputs is illustrated in

Figure B.1.

The function g will be referred to as the response function because it defines the response
parameter X given the input parameters Yy, Yo, ..... Y. The input parameters Y;, i =1, 2, ..., n
are referred to as the basic parameters. For simplicity, we will assume throughout this section that
Y, are independent parameters. However, all methods described in this Appendix can be extended

to address correlated parameters.

In an influence diagram analysis, X can be seen as the parameter of a functional node and the Y's
as the parameters of its immediate predecessors. For the influence diagram in Figure 2.1 of the
main report, the methods discussed here can be used, for instance, to calculate the probability
distribution of the Number of Fatalities from the probability distributions off the Pipe Performance
and Failure Location.

B.3  Estimation of the Mean and Standard Deviation of X - Simplified Methods

B.3.1 Introduction

This section describes the methods used to estimate the mean and standard deviation of the
response parameter from the moments (e.g., mean standard deviation, skewness and kurtosis) of

the basic parameters. These methods are useful for cases where the mean and standard deviation

are sufficient for the decision analysis.

B.3.2 Calculation Procedure for a Linear Response Function

If the relationship between X and Y;, 1 = 1, 2, ..., n is linear, then Eq. [B.1] becomes
X=ag+a; Yi+a Yo+..... +ap Yy [B.2]

where ag, a,, 2, ..., a, are constants. In this case (recall that we assume Y,’s to be independent

throughout) the mean value and standard deviation of X, jlx and & are given by:

Uy =ag+ a; Uy +ay by + ... + an Hy2 {B.:ﬂ

B.2
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B 3 2
ox =V ajoy, + ad0y, + .. + agoy, [B.4]

This is given without proof but can be verified by the following example. Details and proofs can
be found in Ang and Tang (1984).

Example B.1: Columns 1 and 2 of Table B.1 contain data samples Y; and Y, with means Ly,
and py; of 1.86 and 3.01 and standard deviations oy and &y, of 0.59 and 0.86. Column 3 is

created using:
X=04 Y; +1.2Y,

which is identical to Eq. [B.1] with a; = 0.4 and a; = 1.2. The mean of X calculated using
Eq. [B.3] isux =04 x 1.86 + 1.2 x 3.0l = 436 , and similarly the standard deviation from
Eq. [B.4] is oy = 1.06. These are almost identical to the values calculated from the data at the
bottom of column 3 in Table B.1 and this illustrates the validity of Egs. [B.3] and [B.4].

B.3.3 Calculation Procedure for a Non-Linear Response Function

A non-linear response function can be approximated by a linear function using the tangent to the
original function at any given point. This is illustrated in Figure B.2 for a response variable X
defined as a function g(Y) of one basic random variable (Y). The tangent at the mean value of Y is

a straight line given by:
X =glly) + (Y - y) dg/oY [B.5]

where dg/dY is the derivative of g with respect to Y evaluated at [y (i.e., the slope of the tangent to
g(Y) at Y=lty). This equation is a first order Taylor series expansion of the original function
around the mean of Y. It has the same format as Eq. [B.2] with a5 = g(lty) - Uy (dg/oY) and a; =
dg/dY. Substituting in Egs. [B.3] and [B.4]} and generalizing to n basic variables (Y; , i= 1,2, ...

, ) gives:
Uy = 2yt Bygs oo Hyn) [B.6]
ox =V (3ghOY 1) 0%y + (9g/BY1) GFy + ... + (DY) 03, [B.7]

B.3




CENTRE FOR ENGINEERING RESEARCH INC,

Appendix B

Example B.2: This example is similar to Exampie B.]1 except that the function considered is

non-linear as follows:
X=Y1Y>

The data samples of Y; and Y are given in Table B.2. Their means (yy and ptys are 1.87 and
2.99 and the standard dewviations Gy and Oy, are 0.46 and 0.97. Column 3 is created using the
above equation. The mean of X from Eq. [B.6] is given by Uy = 1.87 x 2.99 = 5.60. The
derivative dg/dY and dg/dY; are given by Y, and Y| and when evaluated at the mean value they
equal Uy; and Wyi. The standard deviation calculated by using these values in Eq. [B.7] is
ox = 2.29. These are close to the values calculated from the data at the bottom of column 3 in
Table B.2 (ux = 5.48, ox = 2.03).

B.3.4 Extensions Using Higher Order Terms
The accuracy of the linear approximation used in Section B.3.3 for the response function, can be
improved by adding higher order terms in the Taylor series expansion. These terms mean that the

approximate function is quadratic or third order and can therefore represent the original function
more accurately resulting in better approximations of the required mean and standard deviation.

In this case, the following equations result (Hahn and Shapiro 1967):

82
Ux = glHyy Hyos - Hyp) + 12] ayz GY; [B.8]
s _nfogY o o (g
g 2 B.9
oy §[3YJ CSYI“E“EI[aYU[aY%}Hs“ (B.9]

where [z and pi4 denote the third and fourth order moments about the mean. These parameters can
be calculated from the probability distributions of the basic variables (Christensen 1989). For the

response variable, they can be calculated from:

-3 (aaf | b [B.10]
ag\‘ Kag \Bfag Y : 2
Z “{:J e 6;:;12L§“:J {TJ Tn e

B .4
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B.4 Estimation of the Probability distribution of X Using Reliability Methods

B.4.1 Introduction

Reliability Methods are approximate techniques for estimating the probabilities of events that are
defined on the basis of functions of basic random parameters. They have been developed over the
past two decades in the area of structural reliability. These methods were developed as an efficient
alternative to Monte Carlo simulations, because the latter can be computationally prohibitive for the

estimation of low probability events.

Reliability methods concentrate on estimating the probability p (X < 0), where X is defined as a

function g(Y1,Y>,....Yy) as in Eq. [B.1]. This is given by:
p=plg(Y1.Y2....Yy) £0] (B.12]

The probability distribution of X can be calculated by evaluating a series of problems defined as p
(X-a; <0), 1= 1,2,.....n. This probability is equal to p (X £ a;), i=1.2,...,n, which is in fact

the cumulative probability distribution of X.

Example B.3: Consider a simple concrete beam with a random mid-section bending moment
capacity of R and a random applied mid-section bending moment of S. Failure of the beam in
bending at the mid-section occurs if R £ 8§, or if R - § < 0. This means that the probability of
failure pr = p (R - § < 0), which is the same format as Eq. [B.12] with g(R,S) = R - S. If the
resistance R and S are defined as functions of a number of basic random parameters Y(,Y....,Yq
representing  the material  strength, beam dimensions and load intensity, then
pe=p[g(Y1.Y2,....Yy) < 0L

In the theory of structural reliability, a failure condition is usually referred to as a limit state and

consequently, g is referred to as the limit state function. Because the method is presented here in a

generalized sense, g will be referred to as the response function.

B.S
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B.4.2 The Basic Principles of Reliability Methods

B.4.2.1  General Probability Integrais

The calculation of the probability in Eq. [B.12] is a multidimensional integration problem. To
explain this, consider the one-dimensional case in which X is a function of only one random
variable, L.e., X = g(Y;). The calculation of p (X £0) = p [g(Y) <0]is illustrated in Figure B.3.
The procedure consists of finding the range of Yy values for which g(Y;) < 0 and then calculating
the probability that Y is in this range. This probability is equal to the area under the PDF of Y for
all values of Y leading to g(Y;) < 0, which can be calculated by the integral

p [g(Yl)S0]=J fyi(y1) dyy [B.13]
gYp <0

Now, consider the two-dimensional case in which X = g(Y,Y>). In this case, 2(Y1,Y2) = 0 can
be plotted in the {Y,Y} plane as shown in Figure B.4. The function 2(Y1,Y,) = 0 divides the
{Y1,Y,} plane into two regions; a region in which g(Y,Y;) < 0 and a region in which
g(Y.Y7)>0. If a perpendicular axis to the {Y,,Y,} plane is drawn, on which a bivariate
probability density function of Y; and Y3 is defined (see Figure B.5), then p [g(Y,Y2) < 0] is
given by the volume under this density function and over the corresponding region in the {Y[,Y>)
plane. This volume can be calculated by integration of the joint (bivariate) probability density

function over the appropriate domain. This is given by:

pg=s0) =I ] fy1,y2(yi.y2) dy: dya [B.14]
g(YLY2) <0

In the general case where there are n Y’s, a visual representation is not possible but the probability
p {g(Y1.Y2, ....Yy) € 0] is calculated by generalizing Eq. [B.14] to an n-dimensional integral.

These integrals are often referred to as general probability integrals.

B.4.2.2  The Evaluation of Probability Integrals Using Reliability Methods

The evaluation of this type of probability integral is a well known problem that appears repeatedly
in probabilistic analysis. Reliability methods focus on estimating general probability integrals
using approximate efficient algorithms. These algorithms are based on the special case of the
problem: if the response function is linear (as in Eq. {B.2]), and if the Y; variables are normally

distributed and independent, then X is also normally distributed with a mean and standard deviation
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given by Eqgs. [B.3} and [B.4]. Knowledge of the distribution of X can be used to estimate the
required probability directly from normal distribution tables. The essence of reliability methods is
to exploit this special case by transforming any general case with nonlinear g and non-normal Y’s

into an analogous case with a linear g and normal Y's. Two transformations are needed:

1. Variables Y; that do not have normal distributions are transformed into variables U; with
independent normal distributions. (See Madsen er al. 1986 for details).

2. The response surface is approximated by a tangent (i.e., linear function) at the point closest to
the origin (see Figure B.6). This point is called the design point and can be found by solving
an optimization problem in which the distance between the origin and the g surface is
minimized subject to the constraint g = 0. Efficient algorithms exist for this purpose and some

of these are available in commercial computer programs (e.g., Gollwitzer et al. 1988).

These transformations create a new problem for which the special case discussed above can be
used directly, and the required probabilities can be calculated from normal distribution tables.
Because a linear approximation is used this method is referred to as the First Order Reliability
Merthod (FORM). Extensions of this method that use a second order (parabolic) function to
approximate the response surface have been developed and are referred to as Second Order
Reliability Methods (SORM). Detailed description of the methods can be found in Madsen e al.
(1986).

B.4.2.3 Commenis on FORM and SORM

*  Limitations on convergence. Algorithms used in finding the design point are not guaranteed to
converge. They assume that the function g is continuous and smooth in the solution zone.
Functions that include discontinuities (e.g., IF branches in computer algorithms) may cause
problems in convergence. Also the algorithm may converge to a local minimum if one exists,
leading to erroneous solutions (see Figure B.7). FORM and SORM work best for smooth well

behaved g functions.

*  Solution speed. The number of calls to the response function is approximately equal to the
number of random variables multiplied by the number of iterations required to find the design
point. The latter depends on the shape of the g functions. Experience shows that many
problems can be solved in 5 to 10 iterations. Unlike simulation methods, this is not affected by
the level of probability being estimated. A problem with 10 random variables may be solved
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within 100 calls to the g function. This is much less than the number of simulations required

for a Monte Carlo simulation.

v Accuracy of FORM and SORM results. Because the design point has the highest probability
density, the contribution of the region close to the design point to the volume expressed by the
probability integral in Eq. [B.14] is relatively high. As can be seen from Figure B.6, this is
also the area where the straight line approximation is closest to the original function. For these

reasons FORM and SORM give results that are in most cases very close to the exact solution.

B.4.3 Application

Example B.4 (from Ang and Tang 1984): This example deals with the calculation of the
probability of failure of a steel beam in flexure. The flexural capacity of the beam can be estimated

as Y Y., where

Y = the yield strength of steel.

Y- = the section modulus

If the applied moment on the beam is Y3, then the margin of safety X can be estimated as
X=g(Y1.Y2,Y3) =Y Y2- Y3

Failure occurs if the margin of safety is less than zero (i.e. the load exceeds the capacity). The

probability of failure can be calculated as
pl=p(X<0)=p[(YiY2-Ys<0]

The input variables are assumed to be independent with the probability distributions given in
Table B.3.

Details of the FORM solution are not given here since we have not developed the necessary
mathematical background. This problem can be solved by hand, but computer programs are
available for more complex g functions. These programs require programming the response
function in a separate subroutine, linking it to the program and defining the input random variable
distributions. The calculated value of the probability of failure is 0.003. The program used to
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calculate this result (and also used in the decision analysis software for this JIP) is produced by
RCP GmbH of Munich, Germany (Gollwitzer er al. 1988).
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Figure B.1 Hlustration of the problem of deriving random variables based on mathematical models
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X =g (ULy) + (Y - Ly) 0g/aX

o3 X=g(Y)

Figure B.2 Illustration of the linearization procedure using a Taylor
series expansion about the mean of y
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Figure B.3 Tustration of reliability calculation in one dimension
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Figure B.4 Tlustration of reliability calculation in two dimensions
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Figure B.5 Illustration of a response function in two dimensions with bivariate PDF




CENTRE FOR ENGINEERING RESEARCH INC.

U, A /‘Response Function
-—“‘-h-.-._‘ /,
Linearized Response
.~ Function
T Equal Probability
‘\\\ ~  Contours
.
AN Sensitivity Vector
....... \‘\
— X
T VAN
\\ N M
. / ‘ Design point
S— \\.
.

7
=Y

Figure B.6 Ilustration of the linearized response function
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No Y1 Y2 X =
0.4 Y1 + 1.2 Y2

1 2.86 3.56 5.42
2 1.84 2.82 4.12
3 Z2.41 3.40 5.05
4 0.57 3.30 4.19
5 1.55 2.31 3.38
6 1.54 2.53 3.66
7 1.20 3.13 4.23
8 2.34 2.8B3 4.33
9 1.41 3.72 5.03
10 1.62 4.34 5.86
11 2.74 3.62 5.44
12 1.75 2.89 4.17
13 2.19 2.00 3.27
14 1.59 417 5.64
15 2.59 3.76 5.55
16 2.30 4.80 6.79
17 1.59 3.41 4.72
18 1.68 0.72 1.54
19 2.16 2.83 4,286
20 1.92 1.83 2.97
21 0.72 3.01 3.90
22 1.41 3.25 4.46
23 1.81 1.77 2.85
24 2.10 3.26 4.76
25 2.22 2.02 3.32
28 1.03 3.18 4.24
27 2.34 3.56 5.21
28 2.74 3.18 4.89
28 1.72 1.96 3.04
30 2.68 3.17 4.88
Mean 1.86 3.01 4.37
Std. Dev, 0.59 5.86 1.08

Table B.1 Data from normal distributions combined linearly
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Distribution
Variable Definition Units Mean cov Type
Y1 yield strength ksi 40 0.125 lognormal
Yo section modulus in3d 50 0.05 lognormal
Y3 applied moment in-Kips 1000 0.20 Gumbel

Table B.3 Probability distributions on input random variables used in FORM analysis




CENTRE FOR ENGINEERING RESEARCH INC.

No, Y1 Y2 X=Y1.Y2
1 2.03 2.05 4.18
2 1.89 2.75 5.20
3 2.34 3.19 7.46
4 1.47 3.31 4.86
5 1.87 3.83 7.14
8 1.43 5.26 7.53
7 1.94 3.72 7.22
8 2.10 2.58 5.42
9 1.23 4.44 5.48
10 279 1.02 2.84
11 2.43 4.02 9.79
12 1.78 3.10 5.52
13 1.43 2.83 4.04
14 2.10 1.94 4,09
15 2.18 3.31 7.23
16 2.37 2.20 5.20
17 1.36 3.50 4.75
18 1.23 3.49 4.29
19 0.97 2.49 2.41
20 2.02 1.73 3.48
21 1.47 418 6.11
29 1.25 3.10 3.89
23 2.59 2.16 5.59
24 2.51 4,52 11.34
25 2.15 1.60 3.43
28 1.84 1.77 3.27
27 217 3.18 6.91
28 1.56 3.10 4.84
29 1.63 2.17 3.55
30 2.07 3.50 7.24

Mean 1.87 2.99 5.48
Std. Dev. 0.46 0.97 2.03

Table B.2 Data from normal distributions combined non-linearly



